
Best Practices for Secure Web Development

 Razvan Peteanu
razvan.peteanu@home.com

Revision 2.0 (1.0 was of limited circulation)

Revision Date July 18, 2000

Best Practices for Secure Web Development

i

Contents

1 Why?..1
1.1 Frequently Asked Questions...2

2 Best Practices ..4
2.1 Security as part of the business picture...4
2.2 Security as part of the requirements gathering4
2.3 Security as part of the architecture...4
2.4 Don’t be anonymous when you won’t end up so5
2.5 Do not use administrative accounts unless needed5
2.6 Don’t use GET to send sensitive data! ...6
2.7 Don’t rely on the client to keep important data7
2.8 Don’t store sensitive stuff in the *SP page itself7
2.9 Keep an eye on HTML Comments left in production code...................8
2.10 Cross-site scripting...9
2.11 Check the wizard-generated or sample code..................................12
2.12 Middleware security..12
2.13 Declarative vs programmatic ...13
2.14 PKI is not a silver bullet ..14
2.15 Snake oil...14
2.16 Code reviews are your friends..14
2.17 Watch what you use ...15
2.18 For troubleshooting, use the logs ...15
2.19 Other pointers ...16

Legal Notice.

All names, products and services mentioned are the trademarks or registered
trademarks of their respective owners.

Throughout the text, a number of vendors, products or services are listed.
This is not an endorsement of the author for the above, but merely pointers
of real world examples of issues discussed. Omissions are possible and the
author welcomes feedback.

Permission is hereby granted to freely distributed this document as long as it
is not altered.

About the author: Razvan Peteanu works in Toronto and can be contacted
by e-mail at razvan.peteanu@home.com

Best Practices for Secure Web Development

1

1 Why?

The following document is intended as a guideline for developing secure
web-based applications. It is not about how to configure firewalls, intrusion
detection, DMZ or how to resist DDoS attacks. This is a task best addressed
at system and network level. However, there is little material available today
intended for developers. We have entered the dotcom age in which a web site
is no longer an isolated site, but an extension of the internal business
systems, yet there isn’t much about how to create this extension securely.

Traditionally, developers have worked on systems for environments where
malicious intents were not a real threat: internal systems, software for home
use, intranets. There may have been occasional exceptions, sometimes with
embarrassing outcomes, but they could be dealt with at HR level and the
example prevented others from attempting it again. An isolated (read: not
linked with internal systems) web site is not far from the same scenario: the
security was treated mostly at the system level by installing the necessary OS
and web server fixes and applying correct settings and permissions. If a
breach occurred, the system was taken offline, rebuilt better and the site put
up again. Everything at a system administration level.

However, as the Internet becomes more and more commercial (after all, this
is where the .com comes from), a web site becomes more and more an
application. Thus, the team has more and more developers, skilled in web and
traditional development. However, few resources for them focus enough on
security to make them aware about what’s out there on the Internet. We
often read that “this web site is secure because it uses 128-bit encryption”.
Most often, programming books will have a single chapter on security,
compressing SSL, signatures, permissions, cookies and other topics in 20
pages. Little if anything is said about how to think maliciously about your own
code, trying to find out if it has a vulnerability. Little if anything is said about
how to do security-focused code reviews.

We hope this document will fill some of the gap.

It is and will continue to be a work in progress and your feedback is highly
appreciated.

Target Audience

The primary audience are developers and architects as well as infosec
professionals. Project managers may be interested as well to understand
various issues that impact specifications and project schedules.

Best Practices for Secure Web Development

2

1.1 Frequently Asked Questions

What exactly do you mean by ‘information security’?

If you care about definitions, you’ll find many. The definition we use most is
“Information security is comprised by a set of technologies and processes
designed in order to protect the information-based assets and enable
business functionality”. Is it the best? Most likely not, but it serves its
purpose.

Several areas covered by security are:

• authentication: positively identifying parties involved in an information
exchange

• authorization: controlling access to resources

• privacy: protecting information from third parties

• non-repudiation: making sure [with legal-strength] a user cannot deny
performing a certain activity when it has been logged as such.

• integrity: protecting information from tampering, intentional or not

• detection & monitoring of unauthorized activities

• legal aspects regarding of protection and response

Some of the areas above are not within the scope of this document. Detection
and monitoring is best addressed at system and network level while legal
issues are best addressed by, well, lawyers.

I thought the firewall would take care of this. Or file permissions. Or
SSL.

Each of the above is useful and necessary to ensure the overall security of the
site, but they address different risks.

Firewalls protect a system from a different class of risks by preventing access
to non-public services and preventing malicious network traffic to reach the
server. SSL provides server (and sometimes client) authentication and
communication privacy, but otherwise it’s blind to the content of the traffic.
File permissions may prevent abuses of rights when two different user levels
are involved but it will not do so between two users with the same level.

To draw a parallel to the traditional development, coding for security would be
very roughly equivalent to putting error handling. It’s got to be in, nothing
around the application can replace it.

I’m an experienced web developer and don’t think I need this.

Best Practices for Secure Web Development

3

This is not about how to do web development. It’s specifically about how to
do secure web development. Why is this emphasis relevant? Because creating
an application able to withstand malicious use (and we’ll see later what this
could mean) is not something that (a) is immediately visible; a non-secure
code can do its primary functionality very well (b) has been a concern during
development phases (c) taught in programming books or seen in traditional
development projects when the user community was limited and not
particularly hacker populated.

Can’t someone do this after I finish my dev work?

No. Within the context of this document, security needs to be built into the
application from the beginning, it’s not something that’s applied at the end.
Of course, we’ll still have permissions and other administrative operations,
but again, they are not a replacement.

Note: We will try to make this document as vendor-neutral as possible.
However, the author’s experience has been mostly with Microsoft technologies
so there will be an inherent slant in this space.

Best Practices for Secure Web Development

4

2 Best Practices

2.1 Security as part of the business picture
Surprise-surprise. Until the past year or so, security and business did not
often come together in the same paragraph.

Well, it shouldn’t be a surprise because ultimately, security is not about
technology but about managing risk. Security is present in Internet projects
precisely because it’s needed to mitigate some risks. Any business has some
assets to protect and in the Internet world, it’s the information assets we are
concerned of. Examples of assets: integrity of the site content, site
availability, data privacy, trust. As you can see, not all assets are physical.

Once the assets are identified, the next step is too identify the risks. If we
look at the example above, we can quickly derive some risks associated with
the enumerated assets: site defacement (the integrity is lost), site is brought
down (remember the DDoS attacks?), customer data gets published on the
web (credit card info is a typical example) or the transaction is made with the
wrong party.

Now, having the risks clearly spelled out, thinking of what security measures
must be put in becomes an easier task, which brings us to the next step:

2.2 Security as part of the requirements gathering
This stage is not specific to security but a normal step in building any project.
The security would come into place for the following topics:

• identifying the assets (see 2.1)

• use cases. How the application will be used is essential to understand the
security implications.

• identifying the users, their roles and rights. Again, this goes straight to
designing the authentication and authorization schemes.

• legal and business issues: support for non-repudiation? An audit trail?
Digital signatures (and if so, what is their legal status in the
countries/states/provinces where the customers are)? Strong encryption
(fortunately, the last months have seen a relaxation of export regulations,
but it's still worth checking)?

2.3 Security as part of the architecture
As with any other item in the requirements list, the first place to address
them is at architectural level. Most of the professionals who have been in the
software industry for a couple of years have seen what happened with
projects with poor or missing architecture: scrambling teams trying to patch
the system so it provides the desired functionality or performance, unscalable
applications, lost money and time.

Best Practices for Secure Web Development

5

In a parallel with the items under the requirements section, the security
architecture will focus on:

• protective measures around the assets (permissions, logins, encryption
etc)

• possibilities to abuse the use cases (this includes thinking of malicious use
cases)

• selecting the platform and technologies that support the users, roles and
access rights. This includes choosing an operating system, the web server,
an application server if applicable, the directory service when a large
number of users is concerned, a user authentication mechanism
(anonymous, cookie, basic, challenge response, digest, certificate-based
etc), the authentication mechanism between the different application tiers
and so on. Certainly, the decisions are not made solely from the security
standpoint but this is the role of the architect: to take in all the application
requirements and find the best possible solution within the constraints.

2.4 Don’t be anonymous when you won’t end up so
If certain pieces of functionality require authentication, plan to use it as early
as possible instead of continuing to use anonymous access (be it to a web
server, a directory or as a guest-like account for the operating system. Using
authenticated access to resources may require a different syntax and/or may
expose authentication/authorization/impersonation issues that will otherwise
stay hidden until later.

Also, using anonymous access to resources also means that the code
responsible for authentication/authorization is not actually used. If it’s not
used, it cannot be [unit-] tested. If it cannot be tested, bugs cannot be
discovered until later.

Certainly, the amount of security put in the development stage must be
reasonable. For instance, enforcing complex and unique passwords might be a
nuisance for the developers while they are writing the code. Such restrictions
can be added later.

2.5 Do not use administrative accounts unless needed
Ummm… Just don’t ask me how many times I had to say “Don’t use the ‘sa’
account to access a SQL Server” ☺

Why is the administrative login not good, even in a secure environment
without any sensitive data? Because it prevents application isolation, accurate
testing and proper accountability and especially the first two direct impact the
development work.

Best Practices for Secure Web Development

6

Using admin accounts is very appealing at the first sight: the developer
doesn’t have to bother with access restrictions and can focus on the
functionality. You’ve already guessed it, the problem has just been spelled
out: with admin accounts, there is no access restriction. The code can do
anything, anytime. At least, until the release date comes closer or the code is
moving in a pre-production environment where accounts and permissions are
managed properly and then things start to break. Tables that used to be
accessible or writable are no longer because specific access rights have not
been assigned, ACLs are applied and various run time errors occur. In a
distributed application even identifying the root cause can be a bit
challenging. All these will add debugging time at a time when no one wants it.

There is another operational danger posed by using admin accounts: because
access is not confined to a specific application you may inadvertently
overwrite something else. When I was working on a project with SQL Server,
I was personally very close to deleting someone else’s tables because I was
using the ‘sa’ account when operating from the management console. On that
particular server there were several databases for different phases of the
same project. They looked very similar, at least as the tables names went, so
a slip of the mouse to the next database in row followed by a ‘Select All’ and
Delete almost made me the first lynched individual in the company’s history. I
still live because of the confirmation message.

The lesson: use application-specific accounts with rights identified as early as
possible. Yes, it is likely the access rights will have to be refined in time, but
unless you start making use of them, how to find out?

2.6 Don’t use GET to send sensitive data!
This is an old one but still very valid.

When sensitive data is to be passed to the server, do not send it as a
parameter in the query string like in:
http://www.your-own-site-here.com/process_card.asp?cardnumber=1234567890123456

This is not appropriate because, like any other HTTP request, this will get
logged in the logs of the web server as well as in whatever proxies might be
on the way. The above request will get logged in clear text similar to:

2000-03-22 00:26:40 - W3SVC1 GET /process_card.asp cardnumber=1234567890123456 200 0 623 360 570
80 HTTP/1.1 Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+NT) - -

Also, the entire URL may be stored by the browser in its history, potentially
exposing the sensitive information to someone else using the same machine
later.

SSL wouldn’t help in this case, because it only protects the request in transit.
Once arrived at the destination, the request will be happily decrypted and
logged in clear text. An apparent rebuttal may come from the standpoint that
the server must be trusted. Yes, it must but this trust implies that private
customer data be dealt with sensibly. There is no reason for the server to

Best Practices for Secure Web Development

7

store such sensitive information in clear text. In some credit card
authorization schemes, the application server is but an intermediate and once
the payment is authorized, the web application does not store the credit card
number or at least not all digits.

The POST method uses the HTTP body to pass information and this is good in
our case because the HTTP body is not logged. Note however, that by itself
POST doesn’t offer enough protection. The data’s confidentiality and integrity
are still at risk because the information is still sent in clear text (or quasi clear
text as in Base64 encoding) so the use of encryption is a must for sensitive
information.

2.7 Don’t rely on the client to keep important data
If you work on the server side of the application, never assume that what you
sent to the browser got back unchanged. A case in point is relying on
hidden form fields to maintain sensitive data between requests. An
example is with shopping carts that send the item price or a discount rate as
a hidden field in the form so that when the customer submits the form, the
price/discount will be submitted as well although this particular field has not
been displayed to the user.

A malicious user can save the web page locally, change the hidden field to
whatever he wants and then submit it or simply use a scripted tool to post
fake orders.

Detailed information and an analysis of real-world commercial products that
have this problem is found in Form Tampering Vulnerabilities in Several
Web-Based Shopping Cart Applications, issued by the ISS on Feb 1, 2000
and available online at http://xforce.iss.net/alerts/advise42.php

A mechanism to detect tampering is using a hash of the sensitive fields. A
hash (also referred to as a message digest) is a one-way function that
processes a variable-length input and produces a fixed-length output. It is
computationally unfeasible to reverse the process, that is to start from a
given hash and find a message that produces it. Standard hashing algorithms
are MD5 and SHA-1 and an example of how to use them with Perl is available
at http://www.webtechniques.com/archives/1998/09/webm/ However, once
you grasped the concept, there is nothing to stop you from implementing the
same mechanisms with alternative technologies, such as COM components. A
search will easily find a number of free or commercial components
implementing MD5 or SHA1.

The article referenced above also illustrates another example of why relying
on the client is not a wise decision, this time the focus being on the HTTP
Referer field.

2.8 Don’t store sensitive stuff in the *SP page itself
(*SP stands for ASP or JSP)

Best Practices for Secure Web Development

8

Most of the time, this “sensitive stuff” would be username/passwords for
accessing various resources (membership directories, database connection
strings). Such credentials can be entered there manually or automatically put
by various wizards or Design Time Controls.

A legitimate question is why would this be a concern since the *SP is
processed on the server and only its results sent to the client. For a number
of reasons: from the security standpoint, the past has seen a number of holes
in IIS that allowed the source of an ASP page to be displayed instead of being
executed. For example, two [old and] very well-known IIS bugs caused the
ASP being displayed by appending a dot or the string ::$DATA after the URL
ending in asp (http://<site>/anypage.asp. or http://<site>/anypage.asp::$DATA) .
Similarly, two recent bugs have affected JRun (a JSP engine)
(http://www.ntsecurity.net/go/load.asp?iD=/security/jrun1.htm) and Weblogic
(http://www.ntsecurity.net/go/load.asp?iD=/security/weblogic1.htm)

Another reason for not hardcoding credentials in the page itself relates to
development practices. Such information should be stored in a centralized
place. In the IIS world, such places are:

♦ GLOBAL.ASA
♦ the IIS metabase
♦ a public property of a COM component
♦ the registry.

GLOBAL.ASA is generally the best place because declarations put there have
global or application scope and are easy to refer to from ASP. For example,
you can have the database or LDAP connection string defined as an
application-level variable. Then, referring to it would be as easy as something
like Application(“DBConnectionString”) or Application
(“ADsPath”) where the two are variable names, you don’t have to use the
same. There is still a chance however that a security bug may reveal the
source of global.asa.

The metabase is a directory-like collection where IIS keeps its settings and
can be accessed through ADSI (the IIS Resource Kit has a useful GUI-based
MetaEdit tool, but you could also use Option Pack’s MDUtil command line
approach). Physically it is stored in %WINNT%\%SYSTEM32%\inetsrv\metabase.bin,
but once loaded the metabase is kept in memory by the web service and
therefore access to it is fast. However, there is little reason to use it instead
of the global.asa for regular tasks.

The last two methods are less used. Using the registry imposes a penalty on
performance. Also, both add some administration overhead (component
registration, .reg files etc), especially at publishing and deployment times.

2.9 Keep an eye on HTML Comments left in production code
This is a no-brainer. Of course, be sensible: not all comments are bad, only
those embedded in the HTML or client script and which may contain private

Best Practices for Secure Web Development

9

information (such as a connection string that was once part of the server side
script, then commented out. In time, through inadvertent editing, it can reach
the client script and thus be transmitted to the browser). The comments are
not dangerous per se, but can reveal information.

2.10 Cross-site scripting
This is a more complex issue and, after going through the introductory pages
below, the reader is encouraged to read the materials available at the
following links (more at the end of the section).

CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests
at http://www.cert.org/advisories/CA-2000-02.html

Not a very straightforward name, but a significant problem which can occur
with sites that allow the user to input some data and later display it. Typical
examples are registration information, bulletin board messages or product
descriptions. In the context of this discussion, the “user” is the more or less
anonymous user who visits the site and not the site administrator that
changes the content.

Why is this a problem?

Because it breaches trust. When a user visits a site, it has a level of trust in
the content that comes from the server. Usually, this means the user expects
the web site will not perform malicious actions against the client and it will
not attempt to mislead the user to reveal personal information.

With sites that accept user-provided data, later used to build dynamic pages,
an entire can of worms is opened. No longer is the web content authored by
the web creators only, it also comes from what other (potentially anonymous)
users have put in. The risk comes from the existence of a number of ways in
which more than the user-input fields can be manipulated to include more
than simple text, such as scripts or links to other sites. Taking the script
example, the code would be executed on the client machine because it would
undistinguishable from the genuine code written by the site developers.
Everything comes in the HTML stream to the browser.

Quick example: Let’s take a site that allows users to input the user’s name
through a form and that the value entered is later displayed. For brevity, we’ll
use the same form for both inputting the string and displaying it. The source
for the form is

<html>
<%

if request.form ("yourname") <>"" then
Response.Write("Hello " + request.form ("yourname"))

else
%>

<form method="POST">
 <input type="text" name= yourname>

Best Practices for Secure Web Development

10

 <input type="submit" value="submit">
</form>

<%
end if

%>
</html>

Enter Bad Guy who, instead of typing his name, types the following in the
input field:

<script language=’javascript’ >alert ('gotcha!');</script>

When later the variable containing the name is displayed as part of a web
page, the visitor will get the script as if it were part of the legitimate site and
the script will get executed on the browser. Feel free to check for yourself and
then view the HTML source of the response web page.

In our case, the script only consisted of a message box being displayed, but
the author could be more “creative”. Such a scenario becomes very
dangerous when a web site accepts content from one user and displays it to
others as well (the code above is rather usable for “self hacking”). Typical
examples are web-based message boards or community sites. The injected
script could perform unwanted actions on the client or send information to
external sites.

Again, the fundamental issue here is that the trust the user put into the web
site is broken: the web page that gets sent to the visitor contains not only
trusted content from the authors but also untrusted content which, equally
important, cannot be identified by the browser as being so.

There are other ways to inject script, such as within an HTML tag:

 click me

The script can even be hosted on another web server (anonymous hosting
companies or previously compromised servers being an excellent choice). In
this case, the malicious string would contain links to the real script. An
example below, illustrating an alternative way of submitting malicious content
via cookies:

If the dynamic content comes from a cookie (example taken from the
Microsoft advisory):

<% Response.Write("<BODY BGCOLOR=\"" +
Request.Cookies("UserColor") + "\">"); %>

The cookie can be trivially manipulated on the client side to:

Cookie: %22+onload%3D%27window%2Elocation%3D
%22http%3A%2F%2Fwww%2Eevilsite%2Ecom%22%3B%27

which would lead to

Best Practices for Secure Web Development

11

<body BGCOLOR="" onload=
'window.location="http://www.evilsite.com";'">

redirecting the user to another site.

There are other ways to inject the script, please refer to the two hyperlinks at
the beginning of the section.

What to do?

There are a number of ways of dealing with this issue. The core idea is to
encode the user-input information in such a way that it will be displayed the
same as the user input it but stored and transmitted in a form that will
prevent the vulnerability from being exploited.

The solution is offered by what is called HTML Encoding, a technique used
when transmitting special characters in an HTML code. In HTML, the
characters < and >, for instance, have a special meaning: they signal the
boundaries of a tag. But what if we want a web page to contain those
characters? The workaround is to use special character sequences that will be
stored as such but displayed as the character intended (similar to \t, \n from
the C world). The character < is HTML-encoded as < and the > sign is
encoded as >.

This is classic HTML knowledge for a web developer but how is this used? The
information input by the user is HTML-encoded by the server and stored as
such. For instance, the Server object in IIS exposes a method called exactly
HTMLEncode which takes a regular string as input and produces an output
string having special HTML characters replaced with the associated escape
sequences. At display time, the HTML encoded string will be sent to the
browser which will interpret the character sequences and display the
characters accordingly. What this means is that if the Bad User typed in
<script>, the server will encode it to <script> and when the Well
Behaved User will get a page with this field, the WBU will see <script> (and
may get alerted if he read this document ☺) but the HTML source of the page
will contain those character sequences and not the <script> string itself.
What does this do? Well, it prevents the browser from interpreting the string
as a tag.

URLs can be exploited as well, reason for which they would be encoded with
the appropriate method, Server.URLEncode.

In practice, there is more to discuss on this. There isn’t a magic bullet and the
various options available are discussed more extensively at the links below.
Perhaps one more thing to note is that protecting against this vulnerability
requires code reviews.

More on this topic:

Understanding Malicious Content Mitigation for Web Developers
http://www.cert.org/tech_tips/malicious_code_mitigation.html

Best Practices for Secure Web Development

12

HOWTO: Prevent Cross-Site Scripting Security Issues
http://www.microsoft.com/technet/support/kb.asp?ID=252985

Apache Cross Site Scripting Info
http://www.apache.org/info/css-security

Java Web Server
http://www.sun.com/software/jwebserver/faq/jwsca-2000-02.html

Q253119 HOWTO: Review ASP Code for CSSI Vulnerability
http://support.microsoft.com/support/kb/articles/Q253/1/19.ASP

Q253120 HOWTO: Review Visual InterDev Generated Code for CSSI Vulnerability
http://support.microsoft.com/support/kb/articles/Q253/1/20.ASP

Q253121 HOWTO: Review MTS/ASP Code for CSSI Vulnerability
http://support.microsoft.com/support/kb/articles/Q253/1/21.ASP

2.11 Check the wizard-generated or sample code
Wizards – when available - are nice and handy to learn new things but when
it comes to security, check what they do behind the scenes, namely, what the
generated code is. It may be possible you’ll find hardcoded credentials to
access resources such as a database or a directory. Not only is it bad from the
security standpoint, but from the development one as well: if the credentials
change (for instance, when moving the coding in a production environment),
the functionality will break.

Same story with code copied & pasted from samples.

2.12 Middleware security
Most serious web applications would be complex enough so that
componentizing them is a must. Whether it’s with COM or EJB, this adds a
layer of complexity to the [security] architecture.

For the security architect, it raises a few specific issues such as how
authentication, authorization and impersonation/delegation of credentials
work in a distributed environment.

This version of the whitepaper will focus on COM security but we hope to add
more material about EJB in the future. In the meantime, keep an eye on the
emerging Java Authentication and Authorization Service
http://java.sun.com/products/jaas/ which adds user-role security to the already
existing mechanisms based on code base and signature. Also, Scott Oaks’
Java Security book published by O’Reilly is an excellent reference into how
Java’s security mechanisms actually work. Check the book’s web site at
http://www.oreilly.com/catalog/javasec/, you can download the code or errata.

Best Practices for Secure Web Development

13

COM security also is a topic big enough for a book and in fact it is. It’s written
by the man to ask about COM security, Keith Brown from Developmentor. Be
sure to check his page http://www.developmentor.com/kbrown/ and
http://www.developmentor.com/securitybriefs/ for details on his brand new book,
Programming Windows Security and also for cool info and utilities to explore
the COM world.

To find out how IIS and MTS/COM+ work together to impersonate a client, read the
following resources:

http://msdn.microsoft.com/msdnmag/issues/0600/websecure/websecure.asp
http://msdn.microsoft.com/msdnmag/issues/0700/websecure2/websecure2.asp
http://www.asptoday.com/articles/20000224.htm
http://www.asptoday.com/articles/20000302.htm and the backgrounder at
http://msdn.microsoft.com/library/techart/msdn_practicom.htm

This last resource has useful tips on the difference between DCOMCNFG and OleView
when it comes to setting component security.

2.13 Declarative vs programmatic
Declarative security takes place when the access control is set from outside
the application, usually through an administrative interface. Programmatic
security is the case in which the logic in the code checks the credentials and
associated rights. In most cases, web applications will be a mixture of these
two methods of enforcing security controls.

When it’s available, declarative security is quite useful: file permissions, MTS
or database server roles are all examples of this type. They are easy to
administer, require no code changes or an understanding of the code for
regular operational tasks. Of course, knowing how to apply and integrate
them into the whole picture requires a thorough understanding, but once the
pieces are in place, daily tasks (such as user and group management) can be
delegated to a different team.

Declarative security is good to protect resources between different groups of
users (i.e., with different rights). However, when you want a greater
granularity, you’ll have to use programmatic security. For instance, to
distinguish between two users from the same group, permissions and roles
are not enough. When you do web banking, the web server can allow
anonymous access to some pages and enforce authentication to others, but
once the users authenticate, it’s the code’s task to prevent one user from
accessing another’s account.

Programmatic security can also help when you need better granularity of
controls then what declarative can offer. For instance, with MTS components,
you can enforce security on a per-interface level. If you want to have different
permissions for some methods within the same interface, however, you’ll
have to resort to calling ObjectContext’s IsCallerInRole method. The same
story when you want to know more about the security context in which the
execution takes place and to distinguish between the original and the direct

Best Practices for Secure Web Development

14

caller. COM+ is better at delegation and impersonation so, in this context,
make sure you know whether the application will run under IIS 4.0 or IIS 5.0

There is no hard and fast rule for when to choose each of the two approaches.
The key is to understand where each fits and how you can use better for your
purposes.

2.14 PKI is not a silver bullet
For the past few years, each has been touted as the Year of the PKI. Now, PKI
is a very cool technology and can do a lot of things, but only if understood
and implemented properly.

A common mistake in the web world is to decide to use certificate
authentication when there is no PKI in place and no plans to implement
certificate management. Because certificates are easy to generate, it may
give the wrong impression there’s nothing more to worry about. You generate
the certificate, install it in the browser and, behold, you have certificate
authentication. However checking a certificate’s validity or managing
certificates is not necessarily a trivial task.

An excellent introduction (and not only) into PKI is Understanding the
Public-Key Infrastructure (by Carlisle Adams, Steve Lloyd , ISBN:
157870166X). Ellison and Stinger’s Ten Risks of PKI whitepaper is also a good
read, see http://www.counterpane.com/pki-risks.html

Also, make sure you understand the default policies in the different products involved
and whether you can customize them enough for your needs.

2.15 Snake oil
The Real World is not necessarily fair and trustworthy and this applies to
security software as well. Once in a while, you will find products with
larger-than-life claims. “Revolutionary breakthroughs”, the cure to all your
security concerns, the secret software that gives you 100% security forever
without even requiring you to do or understand anything etc. You’ve got the
idea. Why they are bad and how to spot such cases is the subject of a
dedicated FAQ: http://www.interhack.net/people/cmcurtin/snake-oil-faq.html (no
longer maintained but still a very good read) or of numerous commentaries in the
Cryptogram newsletter at http://www.counterpane.com/crypto-gram.html

2.16 Code reviews are your friends
There is no better tool in your arsenal in your search for security holes than a
code and architecture review done by a trained eye. For serious applications
you should have code reviews anyway, so you can add the security review.

Best Practices for Secure Web Development

15

This isn’t the place to discuss how reviews should be done, though so we’ll
leave this item this short.

2.17 Watch what you use
The security of the entire application is dependent on all constituent parts. It
is not enough for only the OS and the web server to be secure, all exposed
services must be so. What this boils down to is that if you integrate another
product into the web application (such as a streaming media or a chat server
or any piece someone could connect to, directly or indirectly) you need to
understand the risks the new piece adds.

We mentioned the streaming or chat servers because they are becoming
more common these days. If these servers can be compromised (e.g., via a
classic buffer overflow attack), then the entire application will become so as
well. Now, hosting a streaming server on the same machine as the main web
server is not a good idea when you take performance into account but even if
the machines are different but located on the same network segment, a
sniffer installed on the compromised server can gather data from the other,
non-compromised machines.

The same principle applies for the main server as well. I prefer to use a
server that had security problems in the past which have been fixed
(naturally) then an unknown product that has no reported vulnerabilities. No
news doesn’t necessarily mean good news, it can simply indicate that no one
bothered to really test the server or if someone did, it hasn’t been made
public.

If time is on your side, you can try to evaluate the product’s resilience to
malicious attacks by using tools (such as eEye’s Retina or created by yourself)
or by reviewing the code (for open source software).

2.18 For troubleshooting, use the logs
If you suspect you’re having security problems with your code, check the
logs, they may save you a lot of time of “what on earth is it happening?”.
When the development work starts, make sure you turn logging on and set
the level as high as reasonable, it will prove useful later. Below are some
Microsoft-specific logs you can use and some typical examples:

The NT Security eventlog:

If you’re denied access to some resources, you may find that the account
used (a real user or the IUSR/IWAM accounts) are either denied access to a
resource or are denied the required logon type (interactive vs network). For
distributed apps, the credentials’ impersonation or delegation can be tricky;
check the resources indicated at that section for details.

The IIS log

Best Practices for Secure Web Development

16

By default IIS only logs several fields but the others are useful as well during
development. The easiest way to set extended logging is to do it at the
Master site level, thus all sites you’ll create in the future will have full logging
enabled by default.

The LDAP log

This is for Site Server Membership Authentication only. Unfortunately, Site
Server does not log failed logons with membership authentication which
would be useful when you bind to the directory from code. Workarounds are
handling the failed logins from code (which should be done anyway) and
using the PerfMon counters to monitor the authentication problems (look for
the Site Server Authentication and LDAP Service counters).

2.19 Other pointers
Some resources you may find useful:

http://java.sun.com/security/seccodeguide.html

Georgi Guninski’s home page http://www.nat.bg/~joro

David LeBlanc’s “Writing Secure Code” columns
http://www.ntsecurity.net/go/loader.asp?id=/columns/seccode/default.asp

security portals:

http://www.securityfocus.com
http://securityportal.com/
http://www.esecurityonline.com/
http://www.ntsecurity.net

mailing lists (SecurityFocus indexes them quite well).

